This study compared sensitivity encoding (SENSE) and compressed sensing sensitivity encoding (CS-SENSE) for phase oversampling distance and assessed its impact on image quality and image acquisition time. The experiment was performed with a large diameter phantom using 16-channel anterior body coils. All imaging data were divided into three groups according to the parallel imaging technique and oversampling distances: groups A (SENSE with phase oversampling distance of 150 mm), B (CS-SENSE with phase oversampling distance of 100 mm), and C (CS-SENSE with phase oversampling distance of 75 mm). No statistically significant differences were observed among groups A, B, and C regarding both T2 and T1 turbo spin-echo (TSE) sequences using an acceleration factor (AF) of 2 (p = 0.301 and 0.289, respectively). In comparison with AF 2 of group A, the scan time of AF 2 of groups B and C was reduced by 11.2% and 23.5% (T2 TSE) and 15.8% and 22.7% (T1 TSE), respectively, while providing comparable image quality. Significant image noise and aliasing artifact were more evident at AF 2 in group A compared with groups B and C. CS-SENSE with a less phase oversampling distance can reduce image acquisition time without image quality degradation compared with that of SENSE, despite the increase in aliasing artifact as the AF increased in both CS-SENSE and SENSE.
Keywords: compressed sensitivity encoding; image quality; phase oversampling; sensitivity encoding.
© 2021 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, LLC on behalf of The American Association of Physicists in Medicine.