Advances in medical imaging have enabled patient-specific biomechanical modelling of arterial lesions such as atherosclerosis and aneurysm. Geometry acquired from in-vivo imaging is already pressurized and a zero-pressure computational start shape needs to be identified. The backward displacement algorithm was proposed to solve this inverse problem, utilizing fixed-point iterations to gradually approach the start shape. However, classical fixed-point implementations were reported with suboptimal convergence properties under large deformations. In this paper, a dynamic learning rate guided by the deformation gradient tensor was introduced to control the geometry update. The effectiveness of this new algorithm was demonstrated for both idealized and patient-specific models. The proposed algorithm led to faster convergence by accelerating the initial steps and helped to avoid the non-convergence in large-deformation problems.
Keywords: Aneurysm; Artery; Atherosclerosis; Deformation gradient; Inverse problem; Zero-pressure.
Copyright © 2021 Elsevier Ltd. All rights reserved.