Astrocytes, the most abundant glial cells in the mammalian brain, directly associate with and regulate neuronal processes and synapses and are important regulators of brain development. Yet little is known of the molecular mechanisms that control the establishment of astrocyte morphology and the bi-directional communication between astrocytes and neurons. Here we show that neuronal contact stimulates expression of S1PR1, the receptor for the bioactive sphingolipid metabolite sphingosine-1-phosphate (S1P), on perisynaptic astrocyte processes and that S1PR1 drives astrocyte morphological complexity and morphogenesis. Moreover, the S1P/S1PR1 axis increases neuronal contact-induced expression of astrocyte secreted synaptogenic factors SPARCL1 and thrombospondin 4 that are involved in neural circuit assembly. Our findings have uncovered new functions for astrocytic S1PR1 signaling in regulation of bi-directional astrocyte-neuron crosstalk at the nexus of astrocyte morphogenesis and synaptogenesis.
Keywords: astrocytes; sphingosine-1-phosphate; synaptogenic factors.
© 2021 Wiley Periodicals LLC.