The Validity and Reliability of Two Commercially Available Load Sensors for Clinical Strength Assessment

Sensors (Basel). 2021 Dec 16;21(24):8399. doi: 10.3390/s21248399.

Abstract

Objective: Handheld dynamometers are common tools for assessing/monitoring muscular strength and endurance. Health/fitness Bluetooth load sensors may provide a cost-effective alternative; however, research is needed to evaluate the validity and reliability of such devices. This study assessed the validity and reliability of two commercially available Bluetooth load sensors (Activ5 by Activbody and Progressor by Tindeq).

Methods: Four tests were conducted on each device: stepped loading, stress relaxation, simulated exercise, and hysteresis. Each test type was repeated three times using the Instron ElectroPuls mechanical testing device (a gold-standard system). Test-retest reliability was assessed through intraclass correlations. Agreement with the gold standard was assessed with Pearson's correlation, interclass correlation, and Lin's concordance correlation.

Results: The Activ5 and Progressor had excellent test-retest reliability across all four tests (ICC(3,1) ≥ 0.999, all p ≤ 0.001). Agreement with the gold standard was excellent for both the Activ5 (ρ ≥ 0.998, ICC(3,1) ≥ 0.971, ρc ≥ 0.971, all p's ≤ 0.001) and Progressor (ρ ≥ 0.999, ICC(3,1) ≥ 0.999, ρc ≥ 0.999, all p's ≤ 0.001). Measurement error increased for both devices as applied load increased.

Conclusion: Excellent test-retest reliability was found, suggesting that both devices can be used in a clinical setting to measure patient progress over time; however, the Activ5 consistently had poorer agreement with the gold standard (particularly at higher loads).

Keywords: evaluation studies; hand-held dynamometry; muscle testing; sensor characterization; validity and reliability check.

MeSH terms

  • Humans
  • Muscle Strength Dynamometer
  • Muscle Strength*
  • Reproducibility of Results