The development of materials based on thermoplastic starch (TPS) is an excellent alternative to replace or reduce the use of petroleum-derived polymers. The abundance, renewable origin, biodegradability, biocompatibility, and low cost of starch are among the advantages related to the application of TPS compared to other thermoplastic biopolymers. However, through the literature review, it was possible to observe the need to improve some properties, to allow TPS to replace commonly used polyolefins. The studies reviewed achieved these modifications were achieved by using plasticizers, adjusting processing conditions, and incorporating fillers. In this sense, the addition of nanofillers proved to be the main modification strategy due to the large number of available nanofillers and the low charge concentration required for such improvement. The improvement can be seen in thermal, mechanical, electrical, optical, magnetic, antimicrobial, barrier, biocompatibility, cytotoxicity, solubility, and swelling properties. These modification strategies, the reviewed studies described the development of a wide range of materials. These are products with great potential for targeting different applications. Thus, this review addresses a wide range of essential aspects in developing of this type of nanocomposite. Covering from starch sources, processing routes, characterization methods, the properties of the obtained nanocomposites, to the various applications. Therefore, this review will provide an overview for everyone interested in working with TPS nanocomposites. Through a comprehensive review of the subject, which in most studies is done in a way directed to a specific area of study.
Keywords: Starch; characterizations; nanocomposites; nanofillers; processing; properties.