Objectives: To reveal the heterogeneity of different cell types of osteoarthritis (OA) synovial tissues at a single-cell resolution, and determine by novel methodology whether bulk-RNA-seq data could be deconvoluted to create in silico scRNA-seq data for synovial tissue analyses.
Methods: OA scRNA-seq data (102,077 synoviocytes) were provided by 17 patients undergoing total knee arthroplasty; 9 tissues with matched scRNA-seq and bulk RNA-seq data were used to evaluate six in silico gene deconvolution tools. Predicted and observed cell types and proportions were compared to identify the best deconvolution tool for synovium.
Results: We identified seven distinct cell types in OA synovial tissues. Gene deconvolution identified three (of six) platforms as suitable for extrapolating cellular gene expression from bulk RNA-seq data. Using paired scRNA-seq and bulk RNA-seq data, an "arthritis" specific signature matrix was created and validated to have a significantly better predictive performance for synoviocytes than a default signature matrix. Use of the machine learning tool, Cell-type Identification By Estimating Relative Subsets of RNA Transcripts x (CIBERSORTx), to analyze rheumatoid arthritis (RA) and OA bulk RNA-seq data yielded proportions of T cells and fibroblasts that were similar to the gold standard observations from RA and OA scRNA-seq data, respectively.
Conclusion: This novel study revealed heterogeneity of synovial cell types in OA and the feasibility of gene deconvolution for synovial tissue.
Keywords: Gene deconvolution; Osteoarthritis; Single-cell RNA sequencing; Synovial tissue; Synovitis.
Copyright © 2021 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.