The neurophysiological processes reflecting body illusions such as the rubber hand remain debated. Previous studies investigating the neural responses evoked by the illusion-inducing stimulation have provided diverging reports as to when these responses reflect the illusory state of the artificial limb becoming embodied. One reason for these diverging reports may be that different studies contrasted different experimental conditions to isolate potential correlates of the illusion, but individual contrasts may reflect multiple facets of the adopted experimental paradigm and not just the illusory state. To resolve these controversies, we recorded EEG responses in human participants and combined multivariate (cross-)classification with multiple Illusion and non-Illusion conditions. These conditions were designed to probe for markers of the illusory state that generalize across the spatial arrangements of limbs or the specific nature of the control object (a rubber hand or participant's real hand), hence which are independent of the precise experimental conditions used as contrast for the illusion. Our results reveal a parcellation of evoked responses into a temporal sequence of events. Around 125 and 275 ms following stimulus onset, the neurophysiological signals reliably differentiate the illusory state from non-Illusion epochs. These results consolidate previous work by demonstrating multiple neurophysiological correlates of the rubber hand illusion and illustrate how multivariate approaches can help pinpointing those that are independent of the precise experimental configuration used to induce the illusion.
Keywords: EEG; body consciousness; body ownership; rubber hand; rubber hand illusion; self-consciousness.
Copyright © 2022 Sciortino and Kayser.