Genome-wide identification and functional analysis of circRNAs in Trichophyton rubrum conidial and mycelial stages

BMC Genomics. 2022 Jan 4;23(1):21. doi: 10.1186/s12864-021-08184-y.

Abstract

Background: Circular RNAs (circRNAs) are a group of noncoding RNAs that participate in gene expression regulation in various pathways. The essential roles of circRNAs have been revealed in many species. However, knowledge of circRNAs in fungi is still not comprehensive.

Results: Trichophyton rubrum (T. rubrum) is considered a model organism of human pathogenic filamentous fungi and dermatophytes. In this study, we performed a genome-wide investigation of circRNAs in T. rubrum based on high-throughput sequencing and ultimately identified 4254 circRNAs. Most of these circRNAs were specific to the conidial or mycelial stage, revealing a developmental stage-specific expression pattern. In addition, 940 circRNAs were significantly differentially expressed between the conidial and mycelial stages. PCR experiments conducted on seven randomly selected differentially expressed (DE-) circRNAs confirmed the circularized structures and relative expression levels of these circRNAs. Based on their genome locations, most circRNAs originated from intergenic regions, unlike those in plants and animals. Furthermore, we constructed circRNA-miRNA-mRNA regulatory networks that included 661 DE-circRNAs targeting 140 miRNAs and further regulating 2753 mRNAs. The relative expression levels of two randomly selected circRNA-miRNA-mRNA axes were investigated by qRT-PCR, and the competing endogenous RNA (ceRNA) network theory was validated. Functional enrichment analysis of the target genes suggested that they were significantly involved in posttranscriptional processes and protein synthesis as well as some small-molecule metabolism processes. CircRNAs are relatively more conserved in closely related dermatophytes but rarely conserved in distantly related species. Tru_circ07138_001 is a highly conserved circRNA that was conserved in all ten dermatophytes analyzed in our study and three distantly related species. Its host gene TERG_07138 was also highly conserved in two of these distantly related species Gallus gallus and Caenorhabditis elegans. The specific role of this circRNA deserves further exploration.

Conclusions: Our study is the first to provide a global profile of circRNAs in T. rubrum as well as dermatophytes. These results could serve as valuable resources for research on circRNA regulatory mechanisms in fungi and reveal new insights for further investigation of the physical characteristics of these significant human fungal pathogens.

Keywords: Circular RNA (circRNA); High-throughput sequencing; Target gene; Trichophyton rubrum (T. rubrum); microRNA (miRNA).

MeSH terms

  • Animals
  • Arthrodermataceae*
  • Gene Expression Profiling
  • Gene Regulatory Networks
  • Humans
  • MicroRNAs*
  • RNA, Circular
  • Spores, Fungal

Substances

  • MicroRNAs
  • RNA, Circular

Supplementary concepts

  • Trichophyton rubrum