Insulin mimetic effect of D-allulose on apolipoprotein A-I gene

J Food Biochem. 2022 Feb;46(2):e14064. doi: 10.1111/jfbc.14064. Epub 2022 Jan 5.

Abstract

Several nutrients modulate the transcriptional activity of the apolipoprotein A-I (apo A-I) gene. To determine the influence of rare sugars on apo A-I expression in hepatic (HepG2) and intestinal derived (Caco-2) cell lines, apo A-I, albumin, and SP1 were quantified with enzyme immunoassay and Western blots while mRNA levels were quantified with real-time polymerase chain reaction. The promoter activity was measured using transient transfection assays with plasmids containing various segments and mutations in the promoter. D-allulose and D-tagatose, increased apo A-I concentration in culture media while D-sorbose and D-allose did not have any measurable effects. D-allulose did not increase apo A-I levels in Caco-2 cells. These changes paralleled the increased mRNA levels and promoter activity. D-allulose-response was mapped at the insulin response core element (IRCE). Mutation of the IRCE decreased the ability of D-allulose and insulin to activate the promoter. Treatment of HepG2 cells, but not Caco-2 cells, with D-alluose and insulin increased SP1 expression relative to control cells. D-allulose augmented the expression and IRCE binding of SP1, an essential transcription factor for the insulin on apo A-I promoter activity. D-allulose can modulate some insulin-responsive genes and may have anti-atherogenic properties, in part due to increasing apo A-I production. PRACTICAL APPLICATIONS: Coronary artery disease (CAD) is the number one cause of mortality in industrialized countries. A risk factor associated with CAD is low high-density lipoprotein (HDL) cholesterol and apolipoprotein A-I (apo A-I) concentrations in plasma. Thus, novel therapeutic agents or nutrients that upregulate apo A-I production should be identified. D-allulose and D-tagatose are used as sweeteners and may have favorable effects on insulin resistance and diabetes. This study shows that D-allulose and D-tagatose increases apo A-I production through increased transcription factor SP1-binding to insulin response element of the promoter. These sweeteners modulate some insulin responsive genes, increase the production of apo-A-I, and therefore may have anti-atherogenic properties.

Keywords: Caco-2; D-allulose; HepG2; SP1; apolipoprotein A-I; rare sugars.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Apolipoprotein A-I* / genetics
  • Caco-2 Cells
  • Fructose / pharmacology*
  • Hep G2 Cells
  • Hexoses
  • Humans
  • Insulin*

Substances

  • Apolipoprotein A-I
  • Hexoses
  • Insulin
  • psicose
  • Fructose
  • tagatose