Oil spills and pollution of oily wastewater from the industrial field have not only caused serious economic losses but also imposed a huge threat to human beings. To solve these issues, the development of advanced materials and technologies for the purification of oily wastewater has garnered great concern and become a central topic. Hence, a superhydrophobic polyurethane (PU) sponge adsorbent is designed via mussel-inspired coatings by double bonds to PU sponge, followed by in situ polymerization with 1-hexadecene. The prepared PU sponge adsorbent (PU@DB@16ene sponge) showed outstanding mechanical properties including low density, high porosity, and compression recovery ability. Moreover, the prepared PU@DB@16ene sponge showed excellent adsorption of oils and organic solvents (up to 187 g g-1) and exhibited superior recyclability. Particularly, when the PU@DB@16ene sponge was applied in the continuous and rapid separation of oils and organic solvents, it still showed desired properties at a rapid velocity of 8.3 L m-3 s-1. Additionally, the PU@DB@16ene sponge could not only adsorb organic solvents in laboratories but also adsorb crude oil and industrial waxy oil in practice. Therefore, we proposed a simple and convenient method to construct PU sponge absorbents with great application prospects, which would be highly valuable for crude oil and organic solvents cleanup.
Keywords: PU sponge; adsorbent; crude oil and organic solvents; in situ polymerization; mussel-inspired chemistry.