Single-stranded regions of RNA are important for folding of sequences into 3D structures and for design of therapeutics targeting RNA. Prediction of ensembles of 3D structures for single-stranded regions often involves classical mechanical approximations of interactions defined by quantum mechanical calculations on small model systems. Nuclear magnetic resonance (NMR) spectra and molecular dynamics (MD) simulations of short single strands provide tests for how well the approximations model many of the interactions. Here, the NMR spectra for UCUCGU at 2, 15, and 30 °C are compared to simulations with the AMBER force fields, OL3 and ROC-RNA. This is the first such comparison to an oligoribonucleotide containing an internal guanosine nucleotide (G). G is particularly interesting because of its many H-bonding groups, large dipole moment, and proclivity for both syn and anti conformations. Results reveal formation of a G amino to phosphate non-bridging oxygen H-bond. The results also demonstrate dramatic differences in details of the predicted structures. The variations emphasize the dependence of predictions on individual parameters and their balance with the rest of the force field. The NMR data can serve as a benchmark for future force fields.