Monosialodihexosylganglioside (GM3)-presenting lipid-coated polymer nanoparticles (NPs) that recapitulate the sequestration of human immunodeficiency virus-1 (HIV-1) particles in CD169+ virus-containing compartments (VCCs) of macrophages were developed as carriers for delivery and sustained release of a combination of two antiretrovirals (ARVs), rilpivirine (RPV) and cabotegravir (CAB). RPV and CAB were co-loaded into GM3-presenting lipid-coated polylactic acid (PLA) and poly(lactic-co-glycolic acid) (PLGA) NPs without loss in potency of the drugs. GM3-presenting PLA NPs demonstrated the most favorable release properties and achieved inhibition of HIV-1 infection of primary human macrophages for up to 35 days. Intracellular localization of GM3-presenting PLA NPs in VCCs correlated with retention of intracellular ARV concentrations and sustained inhibition of HIV-1 infection. This work elucidates the design criteria of lipid-coated polymer NPs to utilize CD169+ macrophages as cellular drug depots for eradicating the viral reservoir sites or to achieve long-acting prophylaxis against HIV-1 infection.
Keywords: GM3; HIV-1; bio-nano interface; biomimicry; lipid-coated polymer nanoparticles.