Circulating Tumor Cell Lines: an Innovative Tool for Fundamental and Translational Research

J Vis Exp. 2021 Dec 25:(178). doi: 10.3791/62329.

Abstract

Metastasis is a leading cause of cancer death. Despite improvements in treatment strategies, metastatic cancer has a poor prognosis. We thus face an urgent need to understand the mechanisms behind metastasis development, and thus to propose efficient treatments for advanced cancer. Metastatic cancers are hard to treat, as biopsies are invasive and inaccessible. Recently, there has been considerable interest in liquid biopsies including both cell-free circulating deoxyribonucleic acid (DNA) and circulating tumor cells from peripheral blood and we have established several circulating tumor cell lines from metastatic colorectal cancer patients to participate in their characterization. Indeed, to functionally characterize these rare and poorly described cells, the crucial step is to expand them. Once established, circulating tumor cell (CTC) lines can then be cultured in suspension or adherent conditions. At the molecular level, CTC lines can be further used to assess the expression of specific markers of interest (such as differentiation, epithelial or cancer stem cells) by immunofluorescence or cytometry analysis. In addition, CTC lines can be used to assess drug sensitivity to gold-standard chemotherapies as well as to targeted therapies. The ability of CTC lines to initiate tumors can also be tested by subcutaneous injection of CTCs in immunodeficient mice. Finally, it is possible to test the role of specific genes of interest that might be involved in cancer dissemination by editing CTC genes, by short hairpin ribonucleic acid (shRNA) or Crispr/Cas9. Modified CTCs can thus be injected into immunodeficient mouse spleens, to experimentally mimic part of the metastatic development process in vivo. In conclusion, CTC lines are a precious tool for future research and for personalized medicine, where they will allow prediction of treatment efficiency using the very cells that are originally responsible for metastasis.

Publication types

  • Research Support, Non-U.S. Gov't
  • Video-Audio Media

MeSH terms

  • Animals
  • Biomarkers, Tumor
  • Cell Count
  • Cell Line, Tumor
  • Humans
  • Liquid Biopsy
  • Mice
  • Neoplasm Metastasis
  • Neoplastic Cells, Circulating* / pathology
  • Translational Research, Biomedical

Substances

  • Biomarkers, Tumor