High Mycobacterium tuberculosis Bacillary Loads Detected by Tuberculosis Molecular Bacterial Load Assay in Patient Stool: a Potential Alternative for Nonsputum Diagnosis and Treatment Response Monitoring of Tuberculosis

Microbiol Spectr. 2022 Feb 23;10(1):e0210021. doi: 10.1128/spectrum.02100-21. Epub 2022 Jan 12.

Abstract

Not all patients produce sputum, yet most available TB tests use sputum. We investigated the utility of a novel RNA-based quantitative test, the tuberculosis molecular bacterial load assay (TB-MBLA), for the detection and quantification of Mycobacterium tuberculosis in stool. Stools from 100 adult individuals were treated with OMNIgene-sputum reagent and tested using Xpert MTB/RIF ultra (Xpert ultra), auramine O smear microscopy (smear), mycobacterial growth indicator tube (MGIT), and Lowenstein-Jensen (LJ) cultures. The remaining portions were frozen at -20°C and later tested by TB-MBLA. MGIT sputum culture was used as a TB confirmatory test and reference for stool tests. Sixty-one of 100 participants were already confirmed TB positive by MGIT sputum culture, 20 (33%) of whom were HIV coinfected. TB-MBLA detected M. tuberculosis in 57/100 stool samples, including 49 already confirmed for TB. The mean bacterial load measured by stool TB-MBLA was 5.67 ± 1.7 log10 estimated CFU (eCFU) per mL in HIV-coinfected participants, which was higher than the 4.83 ± 1.59 log10 eCFU per mL among the HIV-negative participants (P = 0.04). The sensitivities (95% confidence intervals [CI]) of stool assays were 80% (68 to 89) and 90% (79 to 98) for TB-MBLA and Xpert ultra, which were both higher than the 44% (32 to 58), 64% (51 to 76), and 62% (45 to 77) for smear, MGIT, and Lowenstein-Jensen (LJ) stool cultures, respectively. The specificity (95% CI) of stool assays was highest for smear, at 97% (87 to 100), followed by Xpert ultra at 91% (76 to 98), TB-MBLA at 79% (63 to 90), LJ at 80% (64 to 91), and MGIT at 62% (45 to 77). Twenty-six percent of MGIT and 21% of LJ stool cultures were indeterminate due to contamination. Detection and quantification of viable M. tuberculosis bacilli in stool raises its utility as an alternative to sputum as a sample type for TB diagnosis. IMPORTANCE This paper highlights the value of stool as a sample type for diagnosis of tuberculosis. While other studies have used DNA-based assays like the Xpert MTB/RIF and culture to detect Mycobacterium tuberculosis in stool, this is the first study that has applied TB-MBLA, an RNA-based assay, to quantify TB bacteria in stool. The high microbial density and diversity in stool compromises the specificity and sensitivity of culture-based tests due to overgrowth of non-M. tuberculosis flora. Consequently, TB-MBLA becomes the most sensitive and specific test for the detection and quantification of viable TB bacteria in stool. Most crucially, this study raises the possibility of a nonsputum alternative sample type for diagnosis of TB among people who have difficulty in producing sputum.

Keywords: Mycobacterium tuberculosis; molecular bacterial load assay; molecular diagnostics.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Bacterial Load*
  • Cross-Sectional Studies
  • Feces / microbiology*
  • Female
  • HIV Infections
  • Humans
  • Male
  • Microscopy
  • Molecular Diagnostic Techniques / methods*
  • Mycobacterium tuberculosis / genetics*
  • Sensitivity and Specificity
  • Sputum
  • Tuberculosis / diagnosis*
  • Tuberculosis / microbiology*
  • Tuberculosis / therapy*