Recent studies have identified a critical role for B cell-produced cytokines in regulating both humoral and cellular immunity. Here, we show that B cells are an essential source of interleukin-27 (IL-27) during persistent lymphocytic choriomeningitis virus (LCMV) clone 13 (Cl-13) infection. By using conditional knockout mouse models with specific IL-27p28 deletion in B cells, we observed that B cell-derived IL-27 promotes survival of virus-specific CD4 T cells and supports functions of T follicular helper (Tfh) cells. Mechanistically, B cell-derived IL-27 promotes CD4 T cell function, antibody class switch, and the ability to control persistent LCMV infection. Deletion of IL-27ra in T cells demonstrated that T cell-intrinsic IL-27R signaling is essential for viral control, optimal CD4 T cell responses, and antibody class switch during persistent LCMV infection. Collectively, our findings identify a cellular mechanism whereby B cell-derived IL-27 drives antiviral immunity and antibody responses through IL-27 signaling on T cells to promote control of LCMV Cl-13 infection.
Keywords: B cells; CD4 T cells; IL-27; antibody; viral infection.
Copyright © 2022 the Author(s). Published by PNAS.