In recent years, generative adversarial networks (GANs) have gained tremendous popularity for various imaging related tasks such as artificial image generation to support AI training. GANs are especially useful for medical imaging-related tasks where training datasets are usually limited in size and heavily imbalanced against the diseased class. We present a systematic review, following the PRISMA guidelines, of recent GAN architectures used for medical image analysis to help the readers in making an informed decision before employing GANs in developing medical image classification and segmentation models. We have extracted 54 papers that highlight the capabilities and application of GANs in medical imaging from January 2015 to August 2020 and inclusion criteria for meta-analysis. Our results show four main architectures of GAN that are used for segmentation or classification in medical imaging. We provide a comprehensive overview of recent trends in the application of GANs in clinical diagnosis through medical image segmentation and classification and ultimately share experiences for task-based GAN implementations.
Keywords: Generative adversarial networks; Image classification; Image generation; Image segmentation; Medical imaging.
© 2022. The Author(s) under exclusive licence to Society for Imaging Informatics in Medicine.