Agricultural production activities usually occur in Benin with the use of a huge amount of insecticides including pyrethroids for pest control. It is therefore important to regularly monitor pyrethroid resistance intensity in Anopheles gambiae s.l., the main malaria vector. This study was conducted in cereal, cotton, rice growing, and urban market gardening areas throughout the country in 2018 and 2019. Females An. gambiae s.l. field-collected as larvae were exposed to deltamethrin 1 × (0.05%), 2 × (0.1%), 5 × (0.25%), and 10 × (0.5%) and permethrin 1 × (0.75%), 2 × (1.5%), 5 × (3.75%), and 10 × (7.5%). Synergist assays were also performed using World Health Organization articles combining piperonyl butoxide (PBO) (4%) + deltamethrin 1 × and, PBO (4%) + Permethrin 1 × . Molecular species and L1014F kdr mutation were identified using PCR. Expression of metabolic enzymes was also assessed through biochemical tests. After exposure to permethrin and deltamethrin 10 × , An. gambiae s.l. displayed mortality rates <98%. Synergist assays induced significantly higher mortality rates than pyrethroids alone (p < 0.05). An. gambiae s.l. complex was composed of An. gambiae s.s., Anopheles coluzzii, and Anopheles arabiensis, with mean frequency of the L1014F kdr mutation >75%. Overexpression of nonspecific α and β esterases was observed in the cereal, cotton, and urban market gardening areas, while an overexpression of mixed function oxidases was observed in the cotton and rice growing areas. Overall, An. gambiae s.l. showed high resistance intensity to both deltamethrin and permethrin. The synergist and biochemical tests performed suggest that PBO long-lasting insecticidal nets may provide a greater control of pyrethroid-resistant mosquitoes.
Keywords: An. gambiae s.l.; LLINs; PBO; pyrethroid resistance intensity.