Although chemo-photodynamic therapy demonstrates promising synergetic therapeutic effects in malignant tumors, the light-controlled drug release, synergism and biocompatibility of current nanocarriers are limited. Herein, we report a red light-responsive, self-destructive carrier constructed using polyethylene glycol-modified, diselenide-bridged mesoporous silica nanoparticles. The carrier is co-encapsulated with the chemo-drug doxorubicin and the photosensitizer methylene blue for chemo-photodynamic therapy. Upon low-dose red light irradiation during photodynamic therapy (PDT), the reactive oxygen species (ROS) mediates a diselenide bond cleavage resulting in the degradation of the organosilica matrix and a dual drug release. This, in turn, results in a synergistic chemo-photodynamic performance in vitro and in vivo. More importantly, such cascade chemo-PDT boosts immunogenic cell death and robust anti-tumor immunity responses. Combination with a PD-1 checkpoint blockade further evokes a series of systemic immunity responses that suppress distant tumor growth and the pulmonary metastasis of breast cancer, as well as offer long-term protection against recurrent tumors. The presented work offers a controllable self-destruction nanoplatform for cascade-amplifying chemo-photodynamic therapy in response to external red light radiation.
Keywords: Chemo-photodynamic therapy; Degradation; Immunotherapy; Light-responsive; Mesoporous silica nanoparticles.
Copyright © 2022 Elsevier Ltd. All rights reserved.