In recent studies, fish are heavily used as biomarkers of aquatic pollution, and heavy metals are among the main contributors to water pollution. In the present study, we investigated histopathological changes along with alterations in localization and activity of enzymes alkaline phosphatase (ALP), acid phosphatase (ACP), catalase (CAT), peroxidase (PER) and Na+/K+-ATPase in the gill tissues of Indian stinging catfish Heteropneustes fossilis exposed to two different concentrations (0.4 and 4 mg/L) of lead nitrate for 15 days. Histopathological examination of gill tissues revealed hypertrophy and swelling of epithelial cells, the fusion of epithelium of gill filaments and secondary lamellae, and alteration of secondary lamellae structure. Biochemical assays and histochemical localization show a pronounced effect on enzyme alkaline phosphatase activity and acid phosphatase in the gills of both groups of treated groups. In contrast, a significant decrease was noticed in the enzymatic response including catalase and peroxidase activity. Being a vital organ gill reflects the fish's physiological condition and the severity of the contamination in the surrounding environment. Gill is also the prime organ of osmoregulation in teleosts. Decreased activity of Na+/K+-ATPase suggests lead as a potent inhibitor of Na+/K+-ATPase that causes sodium hyperregulation. Alteration in the activity of metabolic enzymes reflects the level of tissue damage and metabolic disruption. At the same time, the increased activity of antioxidant enzymes states the condition of oxidative stress. Haematological parameters also altered with the lead nitrate exposure, reflecting metal toxicity and immune response against it. Meanwhile, this study also provides a potential use of H. fossilis as a biomarker for aquatic pollution.
Keywords: Antioxidant enzymes; Aquatic pollution; Gill histopathology; Lead nitrate; Metabolic enzymes; Na(+)/K(+)-ATPase; Oxidative stress; Stinging catfish.
Copyright © 2022 Elsevier GmbH. All rights reserved.