Genomic deletion of donor-patient-mismatched HLA alleles in leukemic cells is a major cause of relapse after allogeneic hematopoietic stem cell transplantation (HSCT). Mismatched HLA is frequently lost as an individual allele or a whole region in HLA-class I, however, it is downregulated in HLA-class II. We hypothesized that there might be a difference in T cell recognition capacity against epitopes associated with HLA-class I and HLA-class II and consequently such allogeneic immune pressure induced HLA alterations in leukemic cells. To investigate this, we conducted in vitro experiments with T cell receptor-transduced T (TCR-T) cells. The cytotoxic activity of NY-ESO-1-specific TCR-T cells exhibited similarly against K562 cells with low HLA-A*02:01 expression. However, we demonstrated that the cytokine production against low HLA-DPB1*05:01 expression line decreased gradually from the HLA expression level approximately 2-log lower than normal expressors. Using sort-purified leukemia cells before and after HSCT, we applied the next-generation sequencing, and revealed that there were several marked downregulations of HLA-class II alleles which demonstrated consistently low expression from pre-transplantation. The marked downregulation of HLA-class II may lead to decreased antigen recognition ability of antigen-specific T cells and may be one of immune evasion mechanism associated with HLA-class II downregulation.
Keywords: Allogeneic hematopoietic stem cell transplantation; CTL recognition; Graft-versus-host disease (GVHD); Graft-versus-leukemia effect (GVL); HLA class II downregulation; HLA mismatch.
© 2021. Japanese Society of Hematology.