Background: Healthcare decision makers require accurate long-term economic models to evaluate the cost-effectiveness of new mental health interventions.
Aims: To assess the suitability of current patient-level economic models to estimate long-term economic outcomes in severe mental illness.
Method: We undertook pre-specified systematic searches in MEDLINE, Embase and PsycINFO to identify reviews and stand-alone publications of economic models of interventions for schizophrenia, bipolar disorder and major depressive disorder (PROSPERO: CRD42020158243). We screened paper titles and abstracts to identify unique patient-level economic models. We conducted a structured extraction of identified models, recording the presence of key predefined model features. Model quality and validation were appraised using the 2014 ISPOR and 2016 AdViSHE model checklists.
Results: We identified 15 unique patient-level models for psychosis and major depressive disorder from 1481 non-duplicate records. Models addressed schizophrenia (n = 6), bipolar disorder (n = 2) and major depressive disorder (n = 7). The predominant model type was discrete event simulation (n = 9). Model complexity and incorporation of patient heterogeneity varied considerably, and only five models extrapolated costs and outcomes over a lifetime horizon. Key model parameters were often based on low-quality evidence, and checklist quality assessment revealed weak model verification procedures.
Conclusions: Existing patient-level economic models of interventions for severe mental illness have considerable limitations. New modelling efforts must be supplemented by the generation of good-quality, contemporary evidence suitable for model building. Combined effort across the research community is required to build and validate economic extrapolation models suitable for accurately assessing the long-term value of new interventions from short-term clinical trial data.
Keywords: Cost-effectiveness; bipolar affective disorders; depressive disorders; psychotic disorders; schizophrenia.