High-Voltage Wave Induced a Unique Structured Percolation Network with a Negative Gauge Factor

ACS Appl Mater Interfaces. 2022 Feb 2;14(4):5661-5672. doi: 10.1021/acsami.1c23741. Epub 2022 Jan 20.

Abstract

Nanocomposite percolation networks have attracted increasing attention in the field of wearable devices. Generally, the large junction resistance caused by the small contact area in the percolation network is considered as the bottleneck in preparing high-performance electronics. In such electronics, an applied strain will lead to deformation on the fiber junction, subsequently increasing the sheet resistance. However, taking advantage of the dominant role of the contact resistance in the percolation network, the overall resistance of the network can be controlled by skillfully adjusting the contact area. Here, we designed a combined gold-polycaprolactone (Au-PCL) network with a unique buckling net structure. When the thickness of the gold nanolayer is 50 nm, the network shows typical percolation behavior with high transparency (93%), good conductivity (20 Ω/sq), and good ductility. Moreover, the networks show a unique positive relationship between the conductivity and strain due to the variation of contact resistance. By designing different waving angles, the network can be used as a dynamic strain sensor with a tunable gauge factor ranging from -0.8 to -1.8. Overall, these highly stretchable and transparent Au-PCL networks show promising applications in the field of high-performance electronic and optoelectronic nanodevices.

Keywords: buckling microstructure; gold coating; negative strain gauge; percolation network; transparent conductor.