Identification of Druggable Genes for Asthma by Integrated Genomic Network Analysis

Biomedicines. 2022 Jan 6;10(1):113. doi: 10.3390/biomedicines10010113.

Abstract

Asthma is a common and heterogeneous disease characterized by chronic airway inflammation. Currently, the two main types of asthma medicines are inhaled corticosteroids and long-acting β2-adrenoceptor agonists (LABAs). In addition, biological drugs provide another therapeutic option, especially for patients with severe asthma. However, these drugs were less effective in preventing severe asthma exacerbation, and other drug options are still limited. Herein, we extracted asthma-associated single nucleotide polymorphisms (SNPs) from the genome-wide association studies (GWAS) and phenome-wide association studies (PheWAS) catalog and prioritized candidate genes through five functional annotations. Genes enriched in more than two categories were defined as "biological asthma risk genes." Then, DrugBank was used to match target genes with FDA-approved medications and identify candidate drugs for asthma. We discovered 139 biological asthma risk genes and identified 64 drugs targeting 22 of these genes. Seven of them were approved for asthma, including reslizumab, mepolizumab, theophylline, dyphylline, aminophylline, oxtriphylline, and enprofylline. We also found 17 drugs with clinical or preclinical evidence in treating asthma. In addition, eleven of the 40 candidate drugs were further identified as promising asthma therapy. Noteworthy, IL6R is considered a target for asthma drug repurposing based on its high target scores. Through in silico drug repurposing approach, we identified sarilumab and satralizumab as the most promising drug for asthma treatment.

Keywords: asthma; bioinformatic; drug repositioning; genome-wide association study; phenome-wide association study.