Hotspot mutations in the TERT (telomerase reverse transcriptase) gene are key determinants of thyroid cancer progression. TERT promoter mutations (TPM) create de novo consensus binding sites for the ETS ("E26 transformation specific") family of transcription factors. In this study, we systematically knocked down each of the 20 ETS factors expressed in thyroid tumors and screened their effects on TERT expression in seven thyroid cancer cell lines with defined TPM status. We observed that, unlike in other TPM-carrying cancers such as glioblastomas, ETS factor GABPA does not unambiguously regulate transcription from the TERT mutant promoter in thyroid specimens. In fact, multiple members of the ETS family impact TERT expression, and they typically do so in a mutation-independent manner. In addition, we observe that partial inhibition of MAPK, a central pathway in thyroid cancer transformation, is more effective at suppressing TERT transcription in the absence of TPMs. Taken together, our results show a more complex scenario of TERT regulation in thyroid cancers compared with other lineages and suggest that compensatory mechanisms by ETS and other regulators likely exist and advocate for the need for a more comprehensive understanding of the mechanisms of TERT deregulation in thyroid tumors before eventually exploring TPM-specific therapeutic strategies.
Keywords: ETS factors; MAPK signaling; TERT promoter mutations; thyroid cancer; transcriptional regulation.