Longitudinal CT Imaging to Explore the Predictive Power of 3D Radiomic Tumour Heterogeneity in Precise Imaging of Mantle Cell Lymphoma (MCL)

Cancers (Basel). 2022 Jan 13;14(2):393. doi: 10.3390/cancers14020393.

Abstract

The study's primary aim is to evaluate the predictive performance of CT-derived 3D radiomics for MCL risk stratification. The secondary objective is to search for radiomic features associated with sustained remission. Included were 70 patients: 31 MCL patients and 39 control subjects with normal axillary lymph nodes followed over five years. Radiomic analysis of all targets (n = 745) was performed and features selected using the Mann Whitney U test; the discriminative power of identifying "high-risk MCL" was evaluated by receiver operating characteristics (ROC). The four radiomic features, "Uniformity", "Entropy", "Skewness" and "Difference Entropy" showed predictive significance for relapse (p < 0.05)-in contrast to the routine size measurements, which showed no relevant difference. The best prognostication for relapse achieved the feature "Uniformity" (AUC-ROC-curve 0.87; optimal cut-off ≤0.0159 to predict relapse with 87% sensitivity, 65% specificity, 69% accuracy). Several radiomic features, including the parameter "Short Axis," were associated with sustained remission. CT-derived 3D radiomics improves the predictive estimation of MCL patients; in combination with the ability to identify potential radiomic features that are characteristic for sustained remission, it may assist physicians in the clinical management of MCL.

Keywords: imaging based texture analysis; mantle cell lymphoma; personalized medicine; precision imaging; prediction; relapse; risk assessment; tumour heterogeneity.