Investigations about the remediation of Hexachlorocyclohexane (HCH), a persistent organic pollutant of global concern, have been extensively reported to treat the HCH contaminated soil. The difficulty arising due to desorption and long ageing procedures of this hydrophobic organic compound in the soil, make it necessary to exploit techniques like soil washing or addition of surfactants, for enhancing the mass transfer rate of hydrophobic compounds. However, this technique gives rise to the generation of a large quantity of waste solution containing the pollutant and various other toxic substances. Moreover, it is challenging to deal with the complex soil washing solution, and thus a follow-up treatment of such washing solution is essentially required before its discharge. This follow-up treatment could be the bioreactor system to efficiently treat the pollutant in the wash solution, thereby reducing the amount of contaminated soil that has to be treated. Among many suggested remediation methods and treatment technologies, integrated soil washing and post-treatment with the bioreactor system could be an environmentally viable method for the remediation of HCH contaminated sites. This review focuses on the soil washing procedures applied so far for the HCH contaminated soil and various factors affecting the efficiency of separation of the target pollutant. Furthermore, the environmental and reactor design-related factors are also discussed for degradation of HCH in the reactor system. Finally, advantages and environmental feasibility of this proposed combined technology and the challenges that need to be encountered are envisaged.
Keywords: Bioreactor; Bioremediation; Hexachlorocyclohexane; Persistent organic pollutant; Soil washing.
Copyright © 2022 Elsevier Inc. All rights reserved.