Microalgae blooms are always blamed for the interruption of the aquatic environment and pose a risk to the source of drinking water. Meanwhile, microalgae as primary producers are a kind of resource pool and could benefit the environment and contribute to building a circular economy. The lipid and polyhydroxybutyrate (PHB) in the cells of microalgae could be alternatives to fossil fuels and plastics, respectively, which are the culprits of global warming and plastic pollution. Besides, some microalgae are rich in nutrients, such as proteins and astaxanthin, which make themselves suitable for feed additives. As wastewater is rich in nutrients necessary for microalgae, thus, value-added product recovery via microalgae could be an approach to valorizing wastewater. However, a one-size-fits-all approach deploying various wastewater for the above products cannot be summarized. On the contrary, specific technical protocols should be tailored regarding each product in microalgae biomass with various wastewater. Thus, this review is to summarize the research effort by far on wastewater-cultivated microalgae for value-added products. Wastewater type, regulation methods, and targeted product yields are compiled and discussed and are expected to guide future extrapolation into a commercial scale.
Keywords: Astaxanthin; Feeding additives; Lipid; Microalgae; PHB; Value-added products.
Copyright © 2022 Elsevier Ltd. All rights reserved.