Background: Many attempts have been made to inhibit the formation of postoperative intraperitoneal adhesions, but the results have been discouraging. Therefore, the identification of effective preventative measures or treatments is of great importance. In this study, the substantial potential of naringin (NG) to reduce peritoneal adhesions was validated in a rat model.
Materials and methods: A rat peritoneal adhesion model was established by abrasion of the cecum and its opposite intraperitoneal region under aseptic surgical conditions. After the operation, three groups of NG-treated rats were given 2 mL of NG by gavage at different concentrations (40, 60, or 80 mg/kg/d). The sham, control, and hyaluronan (HA) groups were given equal volumes of normal saline daily. On the 8th day, all rats were sacrificed 30 min after the administration of an activated carbon solution (10 mL/kg) by oral gavage. Intraperitoneal adhesion formation was adequately evaluated by necropsy, hematoxylin and eosin (HE) staining, Sirius red staining, immunofluorescence staining, enzyme-linked immunosorbent assays, and reactive oxygen species (ROS) probes. The gastrointestinal dynamics of the rats were assessed on the basis of a small intestinal charcoal powder propulsion test and the detection of motilin and gastrin levels in serum.
Results: Intraperitoneal adhesions were markedly reduced in the group of rats receiving high-dose NG. Compared with the control group, the high-dose NG group showed clear reductions in inflammatory reactions, oxidative stress, collagen deposition, and fibroblast formation in the adhesion tissue and enhanced gastrointestinal dynamics (P < 0.05).
Conclusion: NG alleviated the severity of intraperitoneal adhesions in a rat model by reducing inflammation, oxidative stress, collagen deposition, and fibroblast formation, highlighting the potential of NG as a drug candidate to prevent postoperative peritoneal adhesion formation.
Copyright © 2022 Xiaoqiang Shi et al.