Active fires show an increasing elevation trend in the tropical highlands

Glob Chang Biol. 2022 Apr;28(8):2790-2803. doi: 10.1111/gcb.16097. Epub 2022 Feb 7.

Abstract

As an inherent element of the Earth's ecosystem, forest, and vegetation fires are one of the key contributors to and direct consequences of climate change. Given that topography is one of the key drivers of forest landscapes and fire behavior, it is important to clarify what the topographical characteristics and trends of global fire events are, particularly in the tropics. Here, we have investigated the variations in elevation of active fires at the continental to a global scale, including the tropics, the extra-tropics, the lowlands, and the highlands (greater than 200 m above sea level [asl]), using the available MODIS Collection 6 active fire products (2001-2019). The main conclusions are: (1) the annual totality (average of 4.5 million) of global active fire events decreased and over 97% of them occurred frequently below 1500 m asl. (2) The tropics and the highlands accounted for ~74% (±3%) and 71% (±2%) of global active fires, respectively, and 77% (±2%) were observed in the tropical highlands. (3) From the beginning of the 21st century, active fires in the highlands displayed an upward elevational trend, particularly in the tropics, while the opposite trend was observed for the lowlands. More importantly, the rate of the increasing elevation in the highlands had a greater magnitude than that of decreasing elevation in the lowlands. (4) Finally, the United Nations collaborative program on Reducing Emissions from Deforestation and Forest Degradation (UN-REDD) in Developing Countries seemed to slow down or even result in a reversal of the upward elevational trend of fire occurrences in the tropics for the partner countries, especially in the lowlands. In the context of global climate change and rampant fires, the trend of rising elevation for active fire occurrences, particularly in the tropical highlands, indicates that more vegetation burning events occur or will occur in hilly to mountainous areas, thus posing further threats to tropical forests and some important biodiversity refuges. More sustained efforts should be made by governments and the scientific community to instigate enhanced fire management practices and to conduct in-depth research programs.

Keywords: ASTER GDEM; MODIS Collection 6; active fires; the UN-REDD Program; tropical highlands.

MeSH terms

  • Biodiversity
  • Climate Change
  • Ecosystem*
  • Fires*
  • Forests
  • Trees
  • Tropical Climate