Endometrioid endometrial carcinomas (EECs) are the most common histological subtype of uterine cancer. Late-stage disease is an adverse prognosticator for EEC. The purpose of this study was to analyze EEC exome mutation data to identify late-stage-specific statistically significantly mutated genes (SMGs), which represent candidate driver genes potentially associated with disease progression. We exome sequenced 15 late-stage (stage III or IV) non-ultramutated EECs and paired non-tumor DNAs; somatic variants were called using Strelka, Shimmer, SomaticSniper and MuTect. Additionally, somatic mutation calls were extracted from The Cancer Genome Atlas (TCGA) data for 66 late-stage and 270 early-stage (stage I or II) non-ultramutated EECs. MutSigCV (v1.4) was used to annotate SMGs in the two late-stage cohorts and to derive p-values for all mutated genes in the early-stage cohort. To test whether late-stage SMGs are statistically significantly mutated in early-stage tumors, q-values for late-stage SMGs were re-calculated from the MutSigCV (v1.4) early-stage p-values, adjusting for the number of late-stage SMGs tested. We identified 14 SMGs in the combined late-stage EEC cohorts. When the 14 late-stage SMGs were examined in the TCGA early-stage data, only Krüppel-like factor 3 (KLF3) and Paired box 6 (PAX6) failed to reach significance as early-stage SMGs, despite the inclusion of enough early-stage cases to ensure adequate statistical power. Within TCGA, nonsynonymous mutations in KLF3 and PAX6 were, respectively, exclusive or nearly exclusive to the microsatellite instability (MSI)-hypermutated molecular subgroup and were dominated by insertions-deletions at homopolymer tracts. In conclusion, our findings are hypothesis-generating and suggest that KLF3 and PAX6, which encode transcription factors, are MSI target genes and late-stage-specific SMGs in EEC.