Extracorporeal membrane oxygenation (ECMO) is a procedure used to aid respiratory function in critical patients, involving extracorporeal circulation (ECC) of blood. There is a limited number of studies quantifying the hemodynamic effects of ECC procedures on the microcirculation. We sought to mimic veno-arterial-ECMO flow conditions by use of a scaled-down circuit primed with either lactate Ringer (LR) or 5% human serum albumin (HSA). The circuit was first tested using benchtop runs with blood, and subsequently used for in vivo experiments in Golden Syrian hamsters instrumented with a dorsal window chamber to allow for quantification of microvascular hemodynamics and functional capillary density (FCD). Results showed significant impairment in FCD, and a reduction of arteriolar and venular blood flow, with HSA providing significant higher blood flows and FCD compared with LR. Changes in hematocrit and RBC labeling after ECC reflected a shift in plasma volume, which may stem from a loss in intravascular oncotic pressure due to priming fluids. The distribution of hemoglobin oxygen saturation in the microvasculature showed a significant decrease in venules after ECC. In addition, major organs such as the kidney and heart showed increases in both inflammatory and damage markers. These results suggest that ECC impairs microvasculature function and promotes ischemia and hypoxia in the tissues, which can be vital to understanding comorbid clinical outcomes from ECC procedures such as acute kidney injury and multiorgan dysfunction.NEW & NOTEWORTHY ECC reduces microvascular perfusion, with no full recovery 24 h after ECC. HSA performed better as compared with LR in terms of FCD and venule flow, as well as venule oxygen saturation. Increases in inflammatory and damage markers in key organs were observed within all organs analyzed.
Keywords: extracorporeal circulation; microcirculation; oxygen delivery; priming fluids.