The Antitumor Effect of TPD52L2 Silencing on Oxaliplatin-Resistant Gastric Carcinoma Is Related to Endoplasmic Reticulum Stress In Vitro

Evid Based Complement Alternat Med. 2022 Jan 18:2022:4451178. doi: 10.1155/2022/4451178. eCollection 2022.

Abstract

Tumor protein D52-like 2 or simply TPD52L2 belongs to the TPD52 family which has been implicated in a variety of human carcinomas. However, the TPD52L2 function in the gastric carcinoma oxaliplatin (OXA) resistance remains elusive. The main objective of this study is to evaluate the TPD52L2 effect in OXA-resistant gastric carcinoma cells in vitro. Oxaliplatin-resistant gastric carcinoma cells were generated in MGC-803 and SGC-7901 cells. siRNA-mediated knockdown of TPD52L2 was investigated in OXA-resistant MGC-803-OXA and SGC-7901-OXA cells. qRT-PCR was performed to assess the expression level of TPD52L2 mRNA. TPD52L2 protein expression level, apoptosis, and endoplasmic reticulum (ER) stress-associated proteins were identified via immunoblotting analysis. MTT assay was conducted for the evaluation of cell viability, while colony-forming activity was carried out via crystal violet staining. SGC-7901-OXA and MGC-803-OXA cells were found to be more resistant to OXA, as compared to the parental cell lines. The expression of TPD52L2 was found to be upregulated in OXA-resistant cells. Knockdown of TPD52L2 suppressed cell colony-forming potency, cell growth, and development in OXA-resistant cells. TPD52L2 knockdown also enhanced the PARP and caspase-3 cleavage. ER-associated proteins such as PERK, GRP78, CHOP, and IRE1α were found to be elevated in TPD52L2 knockdown cells. ER stress might be involved in TPD52L2 knockdown-induced apoptosis in OXA-resistant gastric carcinoma cells.