Bleeding Risk Assessment in End-Stage Kidney Disease: Validation of Existing Risk Scores and Evaluation of a Machine Learning-Based Approach

Thromb Haemost. 2022 Aug 29;122(9). doi: 10.1055/a-1754-7551. Online ahead of print.

Abstract

Background: Patients with end-stage kidney disease (ESKD) on hemodialysis (HD) are at increased risk for bleeding. However, despite relevant clinical implications regarding dialysis modalities or anticoagulation, no bleeding risk assessment strategy has been established in this challenging population.

Methods: Analyses on bleeding risk assessment models were performed in the population-based Vienna InVestigation of Atrial fibrillation and thromboemboLism in patients on hemoDialysIs (VIVALDI) study including 625 patients. In this cohort study, patients were prospectively followed for a median observation period of 3.5 years for the occurrence of major bleeding. First, performances of existing bleeding risk scores (i.e., HAS-BLED, HEMORR2HAGES, ATRIA, and four others) were evaluated in terms of discrimination and calibration. Second, four machine learning-based prediction models that included clinical, dialysis-specific, and laboratory parameters were developed and tested using Monte Carlo cross-validation.

Results: Of 625 patients (median age: 66 years, 37% women), 89 (14.2%) developed major bleeding, with a 1-year, 2-year, and 3-year cumulative incidence of 6.1% (95% confidence interval [CI]: 4.2-8.0), 10.3% (95% CI: 8.0-12.8), and 13.5% (95% CI: 10.8-16.2), respectively. C-statistics of the seven contemporary bleeding risk scores ranged between 0.54 and 0.59 indicating poor discriminatory performance. The HAS-BLED score showed the highest C-statistic of 0.59 (95% CI: 0.53-0.66). Similarly, all four machine learning-based predictions models performed poorly in internal validation (C-statistics ranging from 0.49 to 0.55).

Conclusion: Existing bleeding risk scores and a machine learning approach including common clinical parameters fail to assist in bleeding risk prediction of patients on HD. Therefore, new approaches, including novel biomarkers, to improve bleeding risk prediction in patients on HD are needed.