Elemental carbon (EC) from various sources contains different sub-fractions with different properties; however, this variability poses several challenges for the accurate assessment of EC emission inventory. EC is defined using thermo-optical analysis (TOA), and its different fractions have different maturation and formation pathways. High- and low-maturity ECs have similar detection signals to those of Soot-EC and Char-EC in TOA. The emission characteristics of Soot-EC and Char-EC were affected by fuel composition and combustion temperatures. Biomass combustion generated more Char-EC than coal combustion, resulting in lower Soot-EC to Char-EC ratios. Soot-EC emissions always increased with an increasing temperature. Char-EC emissions increased with an increasing temperature at 300-900 °C in biomass combustion and decreased in coal combustion when the temperature was >600 °C, suggesting that the two ECs have different formation pathways. Time-resolved analyses of organic carbon (OC), EC, and polycyclic aromatic hydrocarbons showed that Char-EC was preferentially generated in the ignition stage with the rapid emission of OC through direct conversion of OC, whereas Soot-EC was preferentially generated during the flaming stage through gas-phase polymerization of small molecules generated from the decomposition of OC.
Keywords: black carbon; elemental carbon formation; off-line time resolved; polycyclic aromatic hydrocarbons formation; solid fuel combustion.