Central nervous system trauma is a common cause of morbidity and mortality. Additionally, these injuries frequently occur in younger individuals, leading to lifetime expenses for patients and caregivers and the loss of opportunity for society. Despite this prevalence and multiple attempts to design a neuroprotectant, clinical trials for a pharmacological agent for the treatment of traumatic brain injury (TBI) or spinal cord injury (SCI) have provided disappointing results. Improvements in outcome from these disease processes in the past decades have been largely due to improvements in supportive care. Among the many challenges facing patients and caregivers following neurotrauma, posttraumatic nosocomial infection is a significant and potentially reversible risk factor. Multiple animal and clinical studies have provided evidence of posttraumatic systemic immune suppression, and injuries involving the CNS may be even more prone, leading to a higher risk for in-hospital infections following neurotrauma. Patients who have experienced neurotrauma with nosocomial infection have poorer recovery and higher risks of long-term morbidity and in-hospital mortality than patients without infection. As such, the etiology and reversal of postneurotrauma immune suppression is an important topic. There are multiple possible etiologies for these posttraumatic changes including the release of damage-associated molecular patterns, the activation of immunosuppressive myeloid-derived suppressor cells, and sympathetic nervous system activation. Postinjury systemic immunosuppression, particularly following neurotrauma, provides a challenge for clinicians but also an opportunity for improvement in outcome. In this review, the authors sought to outline the evidence of postinjury systemic immune suppression in both animal models and clinical research of TBI, TBI polytrauma, and SCI.
Keywords: immune suppression; mechanism; nosocomial infection; spinal cord injury; traumatic brain injury.