Understanding the dynamics of deforestation and land uses of neighboring areas is of vital importance for the design and development of appropriate forest conservation and management policies. In this article, we approach deforestation as a multilabel classification (MLC) problem in an endeavor to capture the various relevant land uses from satellite images. To this end, we propose a multilabel vision transformer model, ForestViT, which leverages the benefits of the self-attention mechanism, obviating any convolution operations involved in commonly used deep learning models utilized for deforestation detection. Experimental evaluation in open satellite imagery datasets yields promising results in the case of MLC, particularly for imbalanced classes, and indicates ForestViT's superiority compared with well-established convolutional structures (ResNET, VGG, DenseNet, and ModileNet neural networks). This superiority is more evident for minority classes.