Kilohertz-frequency alternating current is used to minimize muscle atrophy and muscle weakness and improve muscle performance. However, no systematic reviews have evaluated the best Kilohertz-frequency alternating current parameters for this purpose. We investigated the effects of the carrier frequency, burst duty cycles, and burst durations on evoked torque, perceived discomfort, and muscle fatigue. A search of eight data sources by two independent reviewers resulted in 13 peer-reviewed studies being selected, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, and rated using the PEDro scale to evaluate the methodological quality of the studies. Most studies showed that carrier frequencies up to 1 kHz evoked higher torque, while carrier frequencies between 2.5 and 5 kHz resulted in lower perceived discomfort. In addition, most studies showed that shorter burst duty cycles (10%-50%) induced higher evoked torque and lower perceived discomfort. Methodological quality scores ranged from 5 to 8 on the PEDro scale. We conclude that Kilohertz-frequency alternating current develops greater evoked torque for carrier frequencies between 1 and 2.5 kHz and burst duty cycles less than 50%. Lower perceived discomfort was generated using Kilohertz-frequency alternating currents between 2.5 and 5 kHz and burst duty cycles less than 50%.
Copyright © 2022 Wolters Kluwer Health, Inc. All rights reserved.