The pandemic caused by the novel betacoronavirus SARS-CoV-2 has already claimed more than 3.5 million lives. Despite the development and use of anti-COVID-19 vaccines, the disease remains a major public health challenge throughout the world. Large-scale screening of the drugs already approved for the treatment of other viral, bacterial, and parasitic infections, as well as autoimmune, oncological, and other diseases is currently underway as part of their repurposing for development of effective therapeutic agents against SARS-CoV-2. In this work, we present the results of a phenotypic screening of libraries of modified heterocyclic bases and 5'-norcarbocyclic nucleoside analogs previously synthesized by us. We identified two leading compounds with apparent potential to inhibit SARS-CoV-2 replication and EC50 values in a range of 20-70 μM. The structures of these compounds can be further optimized to develop an antiviral drug.
Keywords: SARS-CoV-2; antiviral drugs; nucleoside analogs; nucleosides.
Copyright ® 2021 National Research University Higher School of Economics.