Salivary matrix is an appealing specimen type for SARS-CoV-2 serology because of ease of collection and potential for concurrent nucleic acid testing. We address the feasibility of salivary matrix to detect anti-SARS-CoV-2 antibodies using two commercially available anti-SARS-CoV-2 Total antibody assays including analytical validations. Matched serum and saliva samples were collected from 10 convalescent COVID-19 patients and tested using a quantitative anti-Spike Total antibody assay and a qualitative anti-Nucleocapsid Total antibody assay from Roche Diagnostics. Both assays were 100% sensitive for COVID-19 history in serum. However, saliva samples were below serum positivity thresholds. We then collected longitudinal salivary samples from a volunteer cohort receiving the Pfizer-BioNTech COVID-19 BNT162b2 vaccine. Saliva was negative for anti-SARS-CoV-2 antibodies at 5 time points after a single dose of vaccine including day 56 when mean (min-max) serum levels of anti-Spike Total antibody were 79.0 U/mL (46.6-110.1) (N = 8). After a second vaccine dose serum-matched samples were beyond the analytical measuring range of the assay (>2500 U/mL), and detection of salivary anti-Spike Total antibody was achieved in all volunteers (12.2 U/mL [2.0-32.7]) (N = 11) 30 days after the second dose. Mean anti-Spike Total antibody levels in serum (1558 U/mL (434->2500)) and saliva (2.6 U/mL (<0.4-11.4)) declined 216-233 days after the first dose of vaccine (P < 0.05); and saliva was 75% sensitive for two doses of vaccination at this latter time point (N = 25). These data suggest commercial assays are capable of detecting vaccine status after two doses of BNT162b2 vaccine up to 6 months and could inform COVID-19 surveillance.
Keywords: COVID-19 serology; Saliva.
Copyright © 2022 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.