The spliceosome is a large ribonucleoprotein complex responsible for pre-mRNA splicing and genome stability maintenance. Disruption of the spliceosome activity may lead to developmental disorders and tumorigenesis. However, the physiological role that the spliceosome plays in B cell development and function is still poorly defined. Here, we demonstrate that ubiquitin-specific peptidase 39 (Usp39), a spliceosome component of the U4/U6.U5 tri-snRNP complex, is essential for B cell development. Ablation of Usp39 in B cell lineage blocks pre-pro-B to pro-B cell transition in the bone marrow, leading to a profound reduction of mature B cells in the periphery. We show that Usp39 specifically regulates immunoglobulin gene rearrangement in a spliceosome-dependent manner, which involves modulating chromatin interactions at the Igh locus. Moreover, our results indicate that Usp39 deletion reduces the pre-malignant B cells in Eμ-Myc transgenic mice and significantly improves their survival.
Keywords: B cell development; Usp39; chromatin interaction; immunoglobulin gene rearrangement; lymphoma; spliceosome.
Copyright © 2022 The Author(s). Published by Elsevier Inc. All rights reserved.