Coronavirus disease 2019 (COVID-19) is a highly contagious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It is broadly accepted that SARS-CoV-2 utilizes its spike protein to recognize the extracellular domain of angiotensin-converting enzyme 2 (ACE2) to enter cells for viral infection. However, other mechanisms of SARS-CoV-2 cell entry may occur. We show quantitatively that the SARS-CoV-2 spike protein also binds to the extracellular domain of broadly expressed integrin α5β1 with an affinity comparable to that of SARS-CoV-2 binding to ACE2. More importantly, we provide direct evidence that such binding promotes the internalization of SARS-CoV-2 into non-ACE2 cells in a manner critically dependent upon the activation of the integrin. Our data demonstrate an alternative pathway for the cell entry of SARS-CoV-2, suggesting that upon initial ACE2-mediated invasion of the virus in the respiratory system, which is known to trigger an immune response and secretion of cytokines to activate integrin, the integrin-mediated cell invasion of SARS-CoV-2 into the respiratory system and other organs becomes effective, thereby promoting further infection and progression of COVID-19.
Keywords: COVID-19; SARS-CoV-2; integrin; virus infection.
Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.