The current study investigated the effects of stevia extracts on a PTZ-induced epileptic rat model and its potential mechanism. Thirty male Sprague-Dawley rats were equally subdivided into 3 groups; (1) normal control (NC) group, (2) PTZ-group: received PTZ (50 mg/kg, i.p. every other day) for 2 weeks, and (3) PTZ+ Stevia group: received PTZ and stevia (200 mg/kg orally daily) for 4 weeks (2 weeks before the start of PTZ treatment and 2 weeks with PTZ administration). The first jerk latency and the seizure score were assessed in rats. Also, brain tissue samples were collected by the end of the experiment, and oxidative stress markers (catalase, MDA, and total antioxidant capacity (TAC)) were measured by biochemical analysis in hippocampal brain homogenates. Also, in the hippocampus, the expression of IL6 and Bcl-2 at the mRNA level and expression of Sirt-1, P53, caspase-3, GFAP, and NF-kB in CA3 hippocampal region by immunohistochemistry was investigated. PTZ substantially increased the seizure score and decreased the seizure latency. Also, PTZ significantly increased MDA, GFAP, IL-6, NF-kB, caspase-3, and p53 and significantly reduced Sirt-1, TAC, and Bcl-2 in hippocampal tissues compared to the control group (p < 0.01). However, Stevia Rebaudiana Bertoni (Stevia R.) significantly attenuated the PTZ-induced seizures, improved oxidative stress markers, downregulated GFAP, IL-6, NF-kB, caspase-3, and p53, and upregulated Sirt-1 and Bcl-2 in the CA3 hippocampal region (p < 0.01). In conclusion, Stevia R. exhibits neuroprotective and antiepileptic actions in PTZ-induced epilepsy due to its antioxidant, anti-apoptotic, and anti-inflammatory effects. Additionally, the Sirt-1 pathway might be involved in the antiepileptic and neuroprotective effects of stevia in PTZ-kindled epileptic rat model.
Keywords: Caspase-3; Epilepsy; IL-6; Oxidative stress; Pentylenetetrazole; Sirt-1; p53.
© 2022 The Author(s). Published by IMR Press.