Second-order nonlinear spectroscopy is a powerful tool in exploring significant physical and chemical characteristics at various interfaces and on chiral systems. We present a method of computing the nonadiabatic couplings between the different excited electronic states with time-dependent density functional theory and then study doubly resonant sum-frequency vibrational spectroscopy (SFVS) of chiral solutions due to the nonadiabatic, Franck-Condon, and Herzberg-Teller (HT) effects. The calculations for R-1,1'-bi-2-naphthol show that the theoretical spectra agree with experiment, and the nonadiabatic corrections are comparable with the HT terms or even larger for some vibrational modes, which is different from the mechanism of SFVS off electronic resonance. Doubly resonant SFVS may be a useful method of studying the nonradiative transition and nonadiabatic effect between the excited electronic states.