The molecular mechanisms underlying progression from astrocytoma to secondary glioblastoma are poorly understood. Telomerase reverse transcriptase (TERT), a gene encoding for the catalytic subunit of telomerase, is upregulated in various cancers. Upregulation of TERT is a likely mechanism by which malignant cells delay senescence and evade cell death. TERT activity is also the primary mechanism by which malignant cells replenish telomeres, with the other means of telomere replacement being the alternative lengthening of the telomeres (ALT) system. The ALT system is known to be upregulated in tumors harboring loss of function mutations in ATRX. This study analyzed aggregate data on TERT and ATRX expression in astrocytoma, anaplastic astrocytoma, and secondary glioblastoma and then supplemented the data with our findings. In data obtained from Oncomine, significantly higher TERT expression is seen in astrocytomas and secondary glioblastomas compared to normal brain tissue. Additionally, The Cancer Genome Atlas data shows that TERT expression is a significant predictor of overall survival in low-grade gliomas. However, studies comparing the expression of TERT across all grades of astrocytomas had not been performed to date. Using immunohistochemical staining, we showed that controlling for ATRX and IDH mutational status, TERT expression increased with tumor grade in a cohort of patient-derived astrocytoma, anaplastic astrocytoma, and secondary glioblastoma samples. These findings indicate that TERT expression increases as astrocytomas become more aggressive tumors, and probably plays a role in their progression.
Keywords: Glioma; TERT; astrocytoma; telomerase.
AJTR Copyright © 2022.