The molybdate-stabilized glucocorticoid binding complex of L-cells contains a 98-100 kdalton steroid binding phosphoprotein and a 90 kdalton nonsteroid-binding phosphoprotein that is part of the murine heat-shock complex

J Steroid Biochem. 1986 Jan;24(1):9-18. doi: 10.1016/0022-4731(86)90025-7.

Abstract

This paper summarizes our work performed with glucocorticoid-binding complexes in molybdate-stabilized cytosol prepared from 32P-labeled L-cells. In our early work, we showed that cytosol prepared from 32P-labeled L-cells contains two phosphoproteins (a 90 and a 98-100 kdalton protein) that elute from an affinity resin of deoxycorticosterone agarose in a manner consistent with the predicted behavior of the glucocorticoid receptor. Both phosphoproteins are immunoadsorbed onto protein-A-Sepharose from molybdate-stabilized cytosol incubated with a monoclonal antibody against the receptor. The 98-100 kdalton phosphoprotein binds steroid and the 90 kdalton phosphoprotein is a structurally different, nonsteroid-binding protein that is bound to the untransformed, molybdate-stabilized glucocorticoid receptor. The 90 kdalton protein reacts on Western blots with a monoclonal antibody raised against a 90 kdalton protein from the water mold Achlya ambisexualis. This antibody recognizes an epitope that is conserved in 90 kdalton phosphoproteins from rodent and human cells, and it reacts with the 90 kdalton phosphoprotein that copurifies with the molybdate-stabilized, untransformed chick oviduct progesterone receptor. The 90 kdalton nonsteroid-binding phosphoprotein is an abundant cytosolic protein that dissociates from the glucocorticoid receptor when it is transformed, and unlike the steroid-binding protein, it does not bind to DNA. The 90 kdalton phosphoprotein determines the acidic behavior of the untransformed glucocorticoid receptor on DEAE-cellulose. This abundant cytosolic 90 kdalton phosphoprotein reacts with rabbit antiserum raised against the gel purified 89 kdalton chicken heat-shock protein (hsp89). This antiserum recognizes 90 kdalton heat-shock proteins in human, rodent, frog and Drosophila cells. Immunoadsorption of molybdate-stabilized cytosol with antibody directed against the 98-100 kdalton steroid receptor results in the immune-specific adsorption of a 90 kdalton phosphoprotein that reacts with anti-hsp89 antibody on Western blots. These observations suggest that, like the transforming proteins from several avian sarcoma viruses, the untransformed glucocorticoid receptor exists in a complex with the 90 kdalton heat-shock protein.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.
  • Review

MeSH terms

  • Animals
  • Antibodies, Monoclonal
  • Chromatography, Affinity
  • Dexamethasone / metabolism
  • Electrophoresis, Polyacrylamide Gel
  • Heat-Shock Proteins / analysis*
  • Humans
  • L Cells / analysis*
  • Mice
  • Molecular Weight
  • Molybdenum / pharmacology*
  • Phosphoproteins / analysis
  • Phosphoproteins / immunology
  • Phosphoproteins / isolation & purification*
  • Receptors, Glucocorticoid / analysis*
  • Receptors, Glucocorticoid / immunology
  • Receptors, Glucocorticoid / isolation & purification
  • Tritium

Substances

  • Antibodies, Monoclonal
  • Heat-Shock Proteins
  • Phosphoproteins
  • Receptors, Glucocorticoid
  • Tritium
  • molybdate
  • Dexamethasone
  • Molybdenum