Although elasticity of the conduit arteries is known to be contribute effective peripheral circulation via Windkessel effects, the relationship between changes in intra-aortic blood volume and conduit artery elasticity remains unknown. Here we assessed the effects of change in intra-aortic blood volume induced by blood removal and subsequent blood transfusion on arterial stiffness and the involvement of autonomic nervous activity using our established rabbit model in the presence or absence of the ganglion blocker hexamethonium (100 mg/kg). Blood removal at a rate of 1 mL/min gradually decreased the blood pressure and blood flow of the common carotid artery but increased a stiffness indicator the cardio-ankle vascular index, which was equally observed in the presence of hexamethonium. These results suggest that arterial stiffness acutely responds to changes in intra-aortic blood volume independent of autonomic nervous system modification.
Keywords: Arterial stiffness; Autonomic nervous activity; Cardio-ankle vascular index; Elasticity; Hypovolemia.
Copyright © 2022 The Authors. Production and hosting by Elsevier B.V. All rights reserved.