As random operations for quantum systems are intensively used in various quantum information tasks, a trustworthy measure of the randomness in quantum operations is highly demanded. The Haar measure of randomness is a useful tool with wide applications, such as boson sampling. Recently, a theoretical protocol was proposed to combine quantum control theory and driven stochastic quantum walks to generate Haar-uniform random operations. This opens up a promising route to converting classical randomness to quantum randomness. Here, we implement a two-dimensional stochastic quantum walk on the integrated photonic chip and demonstrate that the average of all distribution profiles converges to the even distribution when the evolution length increases, suggesting the 1-pad Haar-uniform randomness. We further show that our two-dimensional array outperforms the one-dimensional array of the same number of waveguide for the speed of convergence. Our Letter demonstrates a scalable and robust way to generate Haar-uniform randomness that can provide useful building blocks to boost future quantum information techniques.