The photo-initiated defluorination of iridium hexafluoride (IrF6 ) was investigated in neon and argon matrices at 6 K, and their photoproducts are characterized by IR and UV-vis spectroscopies as well as quantum-chemical calculations. The primary photoproducts obtained after irradiation with λ=365 nm are iridium pentafluoride (IrF5 ) and iridium trifluoride (IrF3 ), while longer irradiation of the same matrix with λ=278 nm produced iridium tetrafluoride (IrF4 ) and iridium difluoride (IrF2 ) by Ir-F bond cleavage or F2 elimination. In addition, IrF5 can be reversed to IrF6 by adding a F atom when exposed to blue-light (λ=470 nm) irradiation. Laser irradiation (λ=266 nm) of IrF4 also generated IrF6 , IrF5 , IrF3 and IrF2 . Alternatively, molecular binary iridium fluorides IrFn (n=1-6) were produced by co-deposition of laser-ablated iridium atoms with elemental fluorine in excess neon and argon matrices under cryogenic conditions. Computational studies up to scalar relativistic CCSD(T)/triple-ζ level and two-component quasirelativistic DFT computations including spin-orbit coupling effects supported the formation of these products and provided detailed insights into their molecular structures by their characteristic Ir-F stretching bands. Compared to the Jahn-Teller effect, the influence of spin-orbit coupling dominates in IrF5 , leading to a triplet ground state with C4v symmetry, which was spectroscopically detected in solid argon and neon matrices.
Keywords: IR spectroscopy; Jahn-Teller effect; UV-vis spectroscopy; iridium fluorides; laser-ablation; matrix-isolation; photochemistry; quantum-chemical calculations; spin-orbit effect.
© 2022 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH.