Others have shown that the purinergic 2X7 receptor (P2X7R) and the NOD-like receptor family protein 3 (NLRP3) inflammasome are involved in multiple inflammatory diseases. In this study, we tested whether Epac1 and PKA lie upstream of P2X7R actions on the NLRP3 inflammasome. We also evaluated whether eye drops of a P2X7R inhibitor protected the retina against ischemia/reperfusion (I/R) injury by measuring retinal thickness and degenerate capillary formation after exposure to I/R and treatment with A438079 eye drops. Mice were exposed to the I/R model followed by eye drops of A438079 for 2 or 10 days. Additionally, primary human retinal endothelial cells (REC) grown in normal and high glucose were treated with ATP (to stimulate P2X7R), an Epac1 agonist, or forskolin (to stimulate PKA), followed by measurements of P2X7R and NLRP3 inflammasome proteins. Eye drops containing A438079 protected the retina against neuronal and vascular damage after exposure to I/R. When REC were treated with ATP to stimulate P2X7R, NLRP3 inflammasome proteins were all increased compared to high glucose only. Epac1 and PKA agonists reduced P2X7R levels in REC grown in high glucose. In conclusion, these data suggest that P2X7 regulates retinal responses to the I/R stress, and that P2X7 increases NLRP3 inflammasome proteins in human REC. Epac1 and PKA can inhibit of P2X7, which will reduce NLRP3 inflammasome proteins in REC grown in high glucose.
Keywords: Endothelial cells; Epac1; Ischemia/reperfusion; NLRP3 proteins; P2X7; PKA.
Copyright © 2022 Elsevier Ltd. All rights reserved.