Balancing Hydraulic Control and Phosphorus Removal in Bioretention Media Amended with Drinking Water Treatment Residuals

ACS ES T Water. 2021 Mar 12;1(3):688-697. doi: 10.1021/acsestwater.0c00178.

Abstract

Green stormwater infrastructure like bioretention can reduce stormwater runoff volumes and trap sediments and pollutants. However, bioretention soil media can be both a sink and source of phosphorus (P). We investigated the potential tradeoff between hydraulic conductivity and P sorption capacity in drinking water treatment residuals (DWTRs), with implications for bioretention media design. Batch isotherm and flow-through column experiments were used to quantify the maximum P sorption capacity (Smax) and rate of P sorption for three DWTR sources. Smax values varied greatly among DWTR sources and methodologies, which has implications for regulatory standards. We also conducted a large column experiment to determine the hydraulic and P removal effects of amending bioretention media with solid and mixed layers of DWTRs. When applied to bioretention media, the impact of DWTRs on hydraulic conductivity and P removal depended on layering strategy. Although DWTR addition in solid and mixed layer designs improved P removal, the solid layer restricted water flow and exhibited incomplete P removal, while the mixed layer had no effect on flow and removed ~100% of P inputs. We recommend that DWTRs be mixed with sand in bioretention media to simultaneously achieve stormwater drainage and P reduction goals in green stormwater infrastructure.

Keywords: bioretention; column study; drinking water treatment residuals; green stormwater infrastructure; hydraulic conductivity; phosphorus; sorption.